Local error analysis of the interior penalty discontinuous Galerkin method for second order elliptic problems

نویسندگان

  • Guido Kanschat
  • Rolf Rannacher
چکیده

A local a priori and a posteriori analysis is developed for the Galerkin method with discontinuous finite elements for solving stationary diffusion problems. The main results are an optimal-order estimate for the point-wise error and a corresponding a posteriori error bound. The proofs are based on weighted -norm error estimates for discrete Green functions as already known for the ‘continuous’ finite element method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A-posteriori error analysis of hp-version discontinuous Galerkin finite element methods for second-order quasilinear elliptic problems

We develop the a-posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finite element methods for a class of second-order quasilinear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh-dependent) energy norm. The bounds are explicit in the local mesh size and the local degree of the approximat...

متن کامل

A posteriori error analysis of hp-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs

We develop the a posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finiteelement methods for a class of second-order quasi-linear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh dependent) energy norm. The bounds are explicit in the local mesh size and the local polynomial degree of the...

متن کامل

Interior penalty bilinear IFE discontinuous Galerkin methods for elliptic equations with discontinuous coefficient

This paper applies bilinear immersed finite elements (IFEs) in the interior penalty discontinuous Galerkin (DG) methods for solving a second order elliptic equation with discontinuous coefficient. A discontinuous bilinear IFE space is constructed and applied to both the symmetric and nonsymmetric interior penalty DG formulations. The new methods can solve an interface problem on a Cartesian mes...

متن کامل

A Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods

In this paper, we derive a priori error estimates for a class of interior penalty discontinuous Galerkin (DG) methods using immersed finite element (IFE) functions for a classic second-order elliptic interface problem. The error estimation shows that these methods can converge optimally in a mesh-dependent energy norm. The combination of IFEs and DG formulation in these methods allows local mes...

متن کامل

Energy Norm a Posteriori Error Estimation of Hp - Adaptive Discontinuous Galerkin Methods for Elliptic Problems

In this paper, we develop the a posteriori error estimation of hp-version interior penalty discontinuous Galerkin discretizations of elliptic boundary-value problems. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The bounds are explicit in the local mesh sizes and approximation orders. A series of numerical experiments il...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Num. Math.

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2002